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SUMMARY 

We describe an upwind finite element method aimed at  numerically simulating the two-dimensional 
transonic flow of a reactive gaseous mixture. The method uses in particular a triangular finite element mesh, 
with an adaptive procedure based on mesh refinement by triangle division, and a n  upwind non-oscillatory 
scheme based on a n  approximate Riemann solver for the evaluation of the convective terms for all species. 
Results concerning the reactive interaction of two supersonic gaseous jets are presented. 

1. INTRODUCTION 

Many industrial flows are so complex that the detailed understanding of the flow features is a very 
difficult task. In many of these situations the numerical simulation of these flows can play an 
essential role in this understanding and can allow one to better describe and explain the 
phenomena. This is especially true for engineering reactive flows. As a consequence, there is an 
increasing need for computer codes modelling the reactive flow of a gas mixture at various Mach 
numbers. 

In these models the aerodynamic convective-acoustic effects often play an important role, 
which may cause difficulties for the stability of the numerical spatial approximation. These 
difficulties can be solved using'a collection of tools: staggered grids, artificial viscosity methods, 
upwind schemes, high-resolution schemes of FCT (flux-corrected transport) or TVD (total 
variation diminishing) type (see e.g. Reference 1 and references therein for a review of most of 
these procedures). Furthermore, it is clear that the simulation of many of these complex 
phenomena requires an adequate adaptive gridding strategy: thus the design of performant 
numerical methods aimed at solving these complex problems should take into account both 
concerns of producing non-oscillatory results and allowing efficient mesh adaption. 

One example of such complex physical phenomena requiring new numerical developments is 
the long-term objective of the work presented in this paper, which deals with the numerical 
simulation of the ignition process of a cryogenic rocket engine. During this process, cold two- 
phase gas/liquid propellant jets are ignited by interacting with a hot gaseous jet in the 
combustion chamber. This ignition process is certainly among the most complex engineering flow 
systems: it involves indeed three-dimensional effects, multi-phase flows, compressible effects (with, 
in particular, strong pressure ratios, supersonic regions and shock waves), turbulence, unsteadi- 
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ness, a complete set of chemical reactions involving a large number of chemical species, high 
temperature and pressure ratios, etc.2 

Because of the problem complexity, we will actually address in this study a simplified model 
problem: we will consider the ignition of a cold gaseous jet by a jet of hot gases, in a two- 
dimensional laminar inviscid flow, with a simplified one-step chemical mechanism, but with a 
detailed simulation of the flow, that is with an accurate resolution of the shock waves and of the 
combustion zone. 

The numerical method used to solve this model problem uses an upwind non-oscillatory 
scheme constructed using multicomponent approximate Riemann solvers for the evaluation of 
the convective terms and a standard finite element formulation for the diffusive terms. This 
scheme operates on an unstructured finite element triangulation of the computational domain, 
which allows us to employ an adaptive mesh refinement procedure which locally divides the 
elements in order to improve the spatial resolution of the method in the thin reaction zone. 

This numerical method is presented in the next section, while several numerical results are 
presented and discussed in Section 3. 

2. NUMERICAL METHOD 

2.1. The equations 

As already said, we will concentrate on the simulation of multicomponent inviscid laminar 
gaseous flows. Our system of governing equations will therefore include the Euler equations, with 
additional continuity equations for each of the gaseous species and with additional diffusive and 
reactive terms in the energy and in the species equations. In fact, the viscous effects could be 
included without particular difficulty in our m e t h ~ d , ~  which would essentially affect the numeri- 
cal solution in the neighbourhood of the chamber walls. 

In order to present the numerical method, we simply consider for the moment a mixture made 
of two species C, and C2, whose mass fractions will be denoted by Y ,  and Y2 (that is, p Y,  and p Y2 
are the separate densities of the two species, p being the mixture density). Since Y ,  = 1 - Y, , we 
will often consider only Y, and simply set Y, = Y. 

The two-dimensional reactive flow of this two-component mixture is described by the following 
system of governing  equation^:^, 

2 

E =  p&C,,T+$p(u2+u2), 
k =  1 

Our notations are classical: u and u are the components of the mixture velocity U, p is the 
pressure, E is the sum of the internal and kinetic energies per unit volume, 1 is the mixture thermal 
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conductivity, T is the temperature and D is the molecular diffusion coefficient of species C, . We 
have assumed that both species behave as perfect gases but that El and C2 may have different 
specific heats C v l ,  Cv2, C,, and Cp2  and different molecular weights M ,  and M 2 .  Lastly, the 
source terms RT and R, represent the contribution of the chemical reactions to the energy and 
mass fraction equations (these terms will be made precise later for the specific problem considered 
in our calculations). We will assume below that the quantities 2, p D ,  cpk and C,, are constant. 

2.2. Spatial approximation 

We now present the numerical scheme used to solve equations (l), (2); this scheme is a mixed 
finite element/finite volume scheme. More precisely, it uses for the hyperbolic terms appearing in 
the left-hand side of system (1) an upwind formulation which is derived by extending to mixtures 
some of the usual approximate Riemann solvers used to solve the Euler equations of a single 
inviscid gas.6 Moreover, it operates on an unstructured finite element triangulation, which makes 
it possible to employ a computational mesh fitted to complex geometries and adapted to complex 
solutions (involving, for instance, strong shocks or thin flames). This scheme can be extended to 
three-dimensional calculations in a straightforward way (see e.g. Reference 7). 

To specify the scheme, we first rewrite system (l), (2) in the following form: 

w,+F(W)x+G(W)y=P(W)x+Q(W),+S(W), 

W =  

P(W)= 

S(W)= 

P 

P U  

P V  

E 

PY 

> F(W)= 

0 
0 

QT 

J 
(3) 

Then we introduce a finite element triangulation of the computational domain. In order to 
derive a finite volume formulation, we consider a dual partition of the domain in control volumes 
or cells: a cell Ci is constructed around each vertex Si by means of the medians of the neighbouring 
triangles, as shown in Figure 1. 
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Figure 1 .  Control volume Ci around vertex Si 

Integrating system (3) on the control volume C i ,  we get {I Ci W f + ~ c i ( F v l + G v i ) = { ~ c ~ ( P v l + Q v I ) + { ~ , S ( W ) ,  (4) 

where v=(v;,  v;) is the outward unit normal on aCi. It now remains to specify how the four 
integrals in (4) are evaluated. 

The time derivative and source terms integrals are approximated using a mass-lumped 
approximation: 

In addition to its simplicity, the mass-lumped approximation has two advantages: first, it allows 
us to employ an explicit time integration scheme, which is no longer possible when the consistent 
non-diagonal mass matrix is used; moreover, the mass-lumped approximation of the heat 
equation conserves the positiveness of the unknowns, while a consistent finite element formula- 
tion does not. 

To approximate the second integral in (4), we begin by noticing that (2) yields (using Mayer's 
relation h f k ( C p k -  c v k ) =  R )  

p = ( Y - l ) [ E - ~ p ( U 2 + u Z ) ] ,  (6) 

where y is the local specific heat ratio of the mixture: 
2 

1 YkCpk 
k = l  v =  - (7) 

' y k c v k .  
k = l  
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It is now a well known fact that the system 

W, + F(W), + G(W), = 0,  (8) 
with the pressure p given by (6), (7), is a non-linear hyperbolic system of conservation laws.6-10 
For any (a, P)E[W’, the matrix adF/dW+/?dG/dW has five real eigenvalues: 

A l  = c r u + ~ u - J ( a ’ + B ’ ) c ,  

A, = A 3  = A, = au+pu, 

,I5 = au + /?u + J(a’ + p 2 ) c ,  

(9) 

with c = J (yp /p ) ,  and a complete set of real eigenvectors. 
Using this fact, we define an ‘approximate Riemann solver’ for system (6H8). We use here an 

extension to mixtures of Roe’s scheme’’ (we refer to References 8-10 for more details on the 
extension of the classical Godunov-type schemes and flux vector splittings to system (6H8)). 
Given two values WL and WR of W, and a vector 11 = (@, qy) ,  we define a numerical flux function 
CD by: 

w R ,  1) = 4 [ F , ( W L ? + ~ , ( W , ) 1 + 3 1 f i , I ( W R - W L ) .  (10) 

In this expression we have set F , ( W )  = fF(W)+qYG(W),  and fi, = fi,(WL, WR) is a dia- 
gonalizable matrix satisfying Roe’s property: 

* ~ W L ) - F , ( W R )  = fi,(wL, w R ) ( w R - w L ) .  (1 1) 

The matrix IA,( is defined using the diagonalization of A,: if 
= ( & ) , , I , , ,  then we set 

= TAT-’ with A diagonal, A 

Ifil =TIA(T-’,  with 1x1 = ( I & l ) k = 1 , 5 .  (12) 
To evaluate the second integral in (4), we first write it in the form 

lacg (Fv; + Gvr) = (Fv; + Gv;), (13) s j e X ( i )  aCij 

where X( i )  is the set of neighbouring nodes of Si and where dCij  = dCindCj. Then, defining the 
vector v i j  = (v;~,  v!~) by 

vx. = v: 7 VY 7 

11 Ic., 
we obtain a first-order accurate upwind approximation of the convective flux (13) by 

( F v ~  + G v ~ )  = 1 @(Wi, Wj, v i j ) .  
jeX(i) 

A second-order accurate upwind extension can be derived by using a MUSCL-type approx- 
imation instead of a constant-by-cell approximation. In this case (15) becomes 

J ( F V ~  + GV!) = C @(wij, wji, vij) ,  
aci j e .X( i )  

where the same numerical flux function CD is used, but where Wij (resp. Wji) is a second-order 
accurate approximation of W at the cell interface Xi, inside the cell Ci (resp. inside the cell Cj) .  
To construct these values Wij and Wji, we first define an approximate gradient of W at the vertex 
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S i  by the formulae 

where F ( i )  denotes the union of those triangles which have Si as a vertex, and where the 
integrands aW/ax and aW/ay are the derivatives of the usual P1 Galerkin interpolant of W. We 
can then evaluate Wi and Wji as 

wij = wi +3VW(i).SiSj, 

Wji = W j  + +VW(j)-SjSi.  

In fact, the fully second-order accurate approximation defined by (16H18) may produce oscil- 
latory results and thus is not employed in this form; we use instead a TVD-like scheme derived by 
using 'limited' extrapolated values Wtj and Wfi in place of Wij and Wji in (16). We refer to 
Reference 12 for the details. 

Lastly, we consider the integral of the diffusive fluxes, f (Pv: +Qvf). In view of the definitions 
(3) of P and Q, this integral reduces to expressions likeaC' 

To evaluate these terms, we consider here that the integrands are constant in each triangle z of the 
triangulation. More precisely, we consider that, in a triangle z with vertices Sj(l < j  < 3), we have 

where + j  is the P1 finite element basis function associated to vertex S j  and, for the last term in (19), 

Then the diffusive term in (4) takes the value 

where PI and Q, are the constant values of P and Q in the triangle z. It is easy to check that 
(20H22) are equivalent to a classical finite element discretization of the diffusive terms. 

2.3. Boundary conditions 

Let r be the boundary of the computational domain and n be the outward unit normal on r. 
We assume that r is divided into two parts, r = To u Too, on which different boundary conditions 
will be used. In this partition, To represents a solid wall while r, represents the far-field (inflow or 
outflow) boundaries. 

In our scheme we do not treat a boundary condition by forcing the value of a variable to a 
prescribed boundary value, but consider instead the integral formulation (4) and apply the 
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boundary conditions by modifying the flux integrals on aCi for those cells Ci such that 

For instance, for a vertex Si located on To we do not impose the slip condition U-n = 0 but take 
acinr z a. 
this condition into account in the evaluation of the convective fluxes, getting 

Fn” + GnY = s dC, n To 

the pressure integrals are computed as 
r r 

J p n y = p i  J n y .  (24) 
ac, n ro ? C a n  To 

pn” = p i  J n x ,  J SC, n To ac, n ra 
Moreover, assuming that the wail is adiabatic and non-catalytic ( V T =  0 and V Y = 0 on ro), we 
set 

Pn” + Qn’ = 0. s ac, n ro 
For a vertex Si located on Too we again set 

f 

Pn” + Qn’ = 0, 
dCi n T, 

which amounts to assuming that the temperature and mass fraction gradients vanish at  the far- 
field boundary roo . To evaluate tbe convective fluxes on dC,n  T,, we again use an approximate 
Riemann solver: the difficulty here is that, in the problems we consider below, the flow may be 
subsonic on some part of rca and supersonic on other parts of this boundary. More precisely, we 

define a ‘far-field solution’ W, , we define n, = n and we set, in agreement with (15), 
dC, n r, 

(271 

s 
(FE” + G U Y )  = O ( w , ,  w,, ni), s ac,nr, 

where 6 is again a numerical flux function. Here we use for simplicity a flux function d) ‘of the 
Steger-Warming type’13 instead of Roe’s flux function (lo), namely 

6(wi ,  W J ) =  H , + ( W ~ ) W ~ + H ; ( W J W , ;  (28) 
in this expression, H, is the Jacobian matrix a P , / a W  and HI:, H, are defined in the classical 
way: if H = TAT with A diagonal, A = ( A k k =  5 ,  then H * = TA * T - with A * = (2; )k= 5 .  

In fact, for reasons which will appear in the next subsection, we will use instead of (28) the 
following more general flux: 

Op(Wi)Wm, ‘I) =H;(Wi)Wi +H,(wi)[Bwi+(l-P)w,I ,  (29) 
where f i  is a positive parameter to be adequately chosen (see Section 3.2 below). 
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2.4. Time integration 

Because the objective of our study is to simulate the unsteady ignitian process, we do not 
attempt to use large time steps but simply use the classical first-order accurate forward Euler 
scheme to advance in time the numerical solution. 

We then have a stability restriction on the time step. The analysis of the stability of the whole 
non-linear scheme being too complex, we derive three approximate stability conditions by 
considering separately the hyperbolic terms, the diffusive terms and the reactive terms. By 
considering only the hyperbolic terms (W, + F, + G ,  = 0), we obtain the convective-acoustic 
stability condition: 

A t  
Ah -max(l U + c I, I UI, I U - cl )  < 1 (30)  

(Ah is a measure of the mesh spacing). By considering the diffusive terms only 

we obtain the diffusive stability condition 

Lastly, by considering only the reactive terms, we obtain a reactive stability condition (in short, 
this condition says that the time step may not be greater than the smallest characteristic time scale 
of the chemical reactions occuring in the mixture; we cannot write this condition down until we 
have specified these reactions). 

3.  NUMERICAL RESULTS 

To show how the above described numerical scheme performs when applied to the jet interaction 
problem mentioned in the introduction, we will now consider in sequence two numerical 
experiments with two different geometries. 

3.1. Results with two species 

In a first step we consider only two gaseous species, 1, and I,, which have the same specific 
heats and molecular weight. In the geometry of Figure 1, a cold jet of species c1 is injected 
through the top orifice of the chamber and a hot jet of species 1, is injected through the left 
orifice. The Mach number and the non-dimensionalized pressure and temperature of the two jets 
at injection are the following: 

A, = 1.7, p 1  = 810, Tl = 3.54, 

A, = 1 . 1 ,  p 2 = 1 1 7 0 0 ,  T2 = 15.7. (32)  

U ,  = u0 = 0, po = 500, To = 5.5, ( Yl )o  = 0, ( Y2)O = 1. (33)  

As initial conditions we use a uniform field W, defined by 

In Figure 2 the dotted part of the boundary represents 'far-field' (inflow or outflow)' boundaries. 
The uniform field W, is used as the far-field solution at  the outflow boundary (i.e. W, = Wo). The 
triangulation is uniform, with 3322 nodes. 
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Figures 2 and 3 show the Mach contours at two successive time levels for a purely aerodynami- 
cal calculation (no diffusive effects: 1 = 0, D = 0; and no reaction: R, = 0, R, = 0). The barrel 
shock and the Mach disk clearly appear at the intermediate time level of Figure 2. In the steady 
state of Figure 3 one can observe the large deviation of the cold jet, which is expected since the 
cold jet momentum is rather small compared with the hot jet momentum. 

Figure 2. Mach contours at an intermediate time (without combustion) 

Figure 3. Steady state Mach contours (without combustion) 
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All these results have been computed with the boundary flux (28), i.e. with /I = 0 in (29). Some 
difficulties with the treatment of the boundary conditions appear at the bottom right corner of 
Figure 3, where a shock wave remains “trapped‘ inside the computational domain. These 
difficulties are of course due to the facts that we use a far-field solution W, which is constant 
along the boundary ra, and that the outflow boundary is not far enough from the injectors. This 
is the reason why we will use the modified p-flux (29) (see Section 3.2. below). 

With the same geometry and injection conditions, we now consider the diffusive and reactive 
effects described in system (1). More precisely, we assume that the simple one-step reaction 

+ Cz occurs in the mixture; thus the reaction terms in ( 1 )  take the form 

w = p y e x p (  -&), (34) 

where Q is the heat released by the reaction and 6 is the activation energy of the reaction. 
As expected from the physical point of view, a flame develops in the region where the cold jet of 

reactant is heated by the hot jet of products (see Figures 4 and 5, where the problem at the bottom 
right corner again appears). 

We have also studied a similar experience in a simpler rectangular geometry. The injection 
conditions are the same as in (32), except that we have decreased the cold jet temperature to TI = 2 
in order to increase the temperature ratio between the two jets. Figures 6 a,nd 7 allows to compare 
the steady flames obtained on a uniform mesh with 357 nodes and on a locally refined adaptive 
mesh with 1026 nodes. The refined mesh, which is shown on Figure 8, is constructed by using the 
following strategy twice: any triangle in which the reaction rate w (computed on the coarse 
uniform mesh) is larger than a given value is divided into four new triangles; then each triangle in 
the first row of undivided triangles is also divided into two or three subtriangles in order to obtain 

Figure 4. Mass fraction contours (with combustion) 
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'i 
Figure 5. Reaction rate contours 

an admissible finite element triangulation (see Reference 14 for more details). The improvement in 
the accuracy of the flame simulation appears very clearly in Figures 6 and 7. 

3.2. Three-species calculations 

In order to consider a problem which is closer to the actual ignition process of a rocket engine, 
we now assume that the molecular weight of the hot gases (injected on the left) is much higher 
than the molecular weight of the cold jet of reactant, which will allow us to increase the 
temperature ratio between the two jets while respecting the Mach number and pressure ratios 
given by (32). More precisely, we will consider that the mixture is made of three species: the species 
C, injected in the cold jet is able to react according to the reaction El -, c, (El and 1, having 
the same specific heats and molecular weights), and the hot jet is made of species c3, with 

Compared to the results obtained with two species, the situation appears to be more 
complicated when three species are considered, and new phenomena appear. Figures 9-1 2 show 
the steady state mass fraction contours for species El and c3 and the steady Mach contours for a 
purely aerodynamical calculation. In particular, Figures 11 and 12 show how the use of the p-flux 
(29) at the outflow boundary improves the quality of the numerical results (the value /3 = 0.8 has 
been chosen on the basis on some simplified analysis of the resulting scheme; see Reference 15 for 
more details). Figures 13-15 correspond to a (non-steady) situation with combustion, where it 
appears that the influence of the flame on the aerodynamical field is much more important than in 
the two-species calculation. 

M ,  > M , .  
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Figure 6. Reaction rate contours on a coarse mesh (simplified geometry) 

.... .... . , - .  ... . 

Figure 7. Reaction rate contours on a refined mesh (simplified geometry) 
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Figure 8. Refined mesh 

Figure 9. Mass fraction contours of the third species (without combustion, 8=0.8) 
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Figure 10. Mass fraction contours of the first species (without combustion, 8=0.8) 

Figure 11. Mach contours (without combustion, B=0.8) 
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Figure 12. Mach contours (without combustion, p=O) 

Figure 13. Mach contours (with combustion, /l=0.8) 
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Figure 14. Mass fraction contours of the first species (with combustion, B=0.8) 

Figure 15. Reaction rate contours (B=0.8) 
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